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VARIABILITY AND CHAOS: NEUROINTEGRATIVE PRINCIPLES IN SELF-ORGANIZATION
OF MOTOR PATTERNS 1

G. J. Mpitsos, H. C. Creech, C. S. Cohan2 , and M. Mendelson3

Oregon State University
MO. Hatfield Marine Science Center

Newport, OR 97365
USA

I ABSTRACT #04 J R- . 9 U 7 0 5

In this chapter e discuss the possibility that varabiflity may be a central feature of self-
organizing prftesses. We suggest that variability may be inherently part of the
mechanisms by which adaptive "heurocircuits'- emerge, and contrast such functional
neurocircuits against definitions involving anatomical or dynamical structures which the
self-organizational definition both contains and supercedes. The experimental work
focuses on an invertebrate animal, the sea slug, Pleurobranchaea calffornica, which has
a rich behavioral repertoire of buccal/oral behaviors, and a relatively simple nervous
system containing identifiable neurons. We present evidence from work on a set of 20
neurons, which we refer to as BCNs (buccal-cerebral neurons), that communicate
between the buccal ganglion and cerebral ganglion. These neurons are crucial for
generating all buccal/oral behaviors, and provide an advantageous source of
experimental material for inquiring into the self-organization of group activity. Variability
in the activity of the BCNs, and in the motoneurons that they drive, is attributable to low-
dimensional chaoseas shown by: 1) autocorrelation functions; 2) correlation analysis of
phase portrait dimenSiens; 3) calculation of Lyapunov exponents; and 4) the structure
of 1 D maps of Poincar6 sectio7fs: -Xhese findings indicate that some variability may arise
from the same mechanisms that generate the patterned activity: i.e., that the observed
variations are not noise that is superimposed on the code underlying a behavior., ut
rather that they constitute the code itself. We discuss the findings with respect to he
role of sensory feedback in the production of adaptive behavior of animals as tley_-
interact with complex and often unpredictable environmentsandw-e suggest tha
chaotic neural activity provides a means for the nervous system to create nev.
informational space rendering animals more stably adaptable in such changing
environments., j*/. ,

INTRODUCTION

Self-organization represents the ability of 'groups of individuals to act *cooperatively"

[7,12,16,17,20,531. These groups consist of relatively autonomous indiviluals, each acting

nonlinearly and usually having information of What Only part of the group is doing. Some

individuals may have more persuasive powers than others, but given the information

concerning a single individual, an observer could not determine the behavior nor future action

of the group.

Hidden in the above account is the role that variability may have in establishihg cooperative

behavior. In neural systems, computer simulation studies have shown that a network of

interconnected elements can produce different patterns of activity, depqnding of the

1This work was supported by grant AFOSR-86-0076.
2 present address: Department of anatomy, SUNY, Buffalo, NY 14226.
3 Present address: Department of Family Medicine, University of Washington, Seattle, WA 98195,
and Tacoma Family Medicine.
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parametric state of the network (18,37,441. In the same way, recent neurophysiological studies

on simple systems indicate that the same population of identifiable neurons can produce

different patterns of activity, depending on differences in sensory inputs or neurohumoral

factors [11,13,31,42,47]. Because of the high degree of parallel interconnections among

neurons in most nervous systems, it has become obvious that it is not possible to predict how

the system will work dynamically by simply looking at the architecture of the neurocircuit; i.e., to

determine the functional characteristics of any given neuron or of a group of neurons, it is

necessary to examine the system during its temporal expression.

However, while the attribute of being parallel implies dynamical, it does not necessarily

account for sell-organization adequately. A functional neurocircuit arising from parallel networks

may require dynamics in order to appear, but if the temporal characteristics and final result of the

dynamics are always the same, the definition of self-organization has not progressed much

beyond the original one in which the information for a motor pattern or a behavior resides in the

neuroanatomy itself. This is not to say that the framework of anatomical, physiological, and

neurohumoral factors are not essential. But while changes in these frameworks, such as

synaptic modifications arising from associative learning or changes in hormone levels, may lead

to different behaviors, they do not necessarily speak directly to the issue of self-organization.

The central issue, we believe, is to account for the process by which both similar and different

behaviors emerge from the same underlying framework, and how this framework can produce

the same behavior in different ways. Thus, at least conceptually, self-organization seems to be

tied to variability.

Observations of extensive variations in behavioral and neural responses have led us to

suggest that variability may be an inseparable part of the mechanisms generating motor patterns

rather than representing extraneous noise [38,39]. This is to say that variation is not noise riding

on the neural code, but rather that the variation resides within the code itself. One of the

simplest examples of this relationship between code and variation is the logistic equation,

Xn+ 1= A(1-Xn)Xn, where each successive value Xn+1 is generated from the previous value Xn

[32]. For values of the constant A just below 4, the equation gives unpredictable results:

although there is no noise in the equation, given a solution to the equation for a particular value

of X, the probability of predicting the solution at some future value quickly decreases. This

sensitivity to initial conditions is a characteristic feature of chaotic systems; the systems follow

deterministic laws such as the logistic equation, but the behavior of the systems is not

predictable into the future.

This inseparable connection between signal and noise has led us to inquire into the

possibility that variability in our experimental system may also be chaotic. Our approach has

been to take advantage of the technical amenities of invertebrate animals in which it is possible
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to identify specific neurons or small groups of neurons repeatedly from one animal to another

[411. In order to understand how adaptive behavior arises In whole animals, such groups of

neurons should have a central role in generating behaviors, but the number of neurons in the

group should be small enough to permit a quantitative analysis of all of their responses. In broad

terms, the experimental problem may best be viewed as an inquiry into the process by which an

individual affects the functioning group, and, in turn, how the group affects the individual. In the

present paper we begin to address this problem by examining the temporal characteristics of

activity in indvidual neurons during the production of repetitive activity arising from coordinated

interactions in the group of neurons to which the neuron in question belongs.

THE EXPERIMENTAL SYSTEM

The sea slug Pleurobranchaea californica, a marine gastropod mollusc, produces many

different buccal/oral behaviors that outwardly seem to have similar repetitive movements. Some

of the most interesting of these behaviors consist of: several components of feeding, such as

biting, ingestion, and swallowing movements; an obvious, active form of regurgitation; a food-

rejection behavior by which the animal sequentially expels unwanted substances from the

mouth in a fashion resembling a reverse of the bite-ingestion phases of feeding; and self- and

interanimal gill grooming. An example of a feeding response appears in Fig. 1.

The nervous system of this animal consists of four major ganglia and several minor ones. Of

the major structures, there are two pedal ganglia, one for each of half of the foot; one buccal

ganglion which drives the opening and closing of the jaws and controls the movements of the

radula, a structure which is analogous to a tongue; and a cerebral ganglion (brain) which

innervates the mouth, lips, and the anterior regions of the head. Connectives (cables of nerve

axons) convey information between specific ganglia.

In Pleurobranchaea, as in many other invertebrate animals and in some vertebrates, many

neurons can be visually or physiologically identified either individually or in small groups

[8,13,24,41,42,45,47]. Despite the relative simplicity of these animals, hundreds or

thousands of neurons may become active in the production of a given behavior. However,

although there are approximately 10,000 neurons in the nervous system of Pleurobranchaea, a

peculiarity in its neuroanatomy (and probably in the nervous systems of many of its cousins)

significantly reduces the number of neurons one needs to consider in order to inquire into self-

organization. For proper coordination to occur between the movements of the jaws and mouth

in Pleurobranchaea, it is necessary that the brain receive information about activity in the buccal

ganglion (Fig. 2). It so happens that there is only one group of 15-20 neurons in each buccal

hemiganglion that can perform this information-carrying capacity. We refer to them as BCNs



(buccal-cerebral neurons), and they, along with one giant neuron, are the only neurons that

send axons from the buccal ganglion to the brain.

.©9

.I -. . .

Figure1: Photographs of the carnivorous mollusc Pleurobranchaea (A) locomoting from left to
right. (B-D) increasing responses to food descending from a small tube at the upper right. Note
progressive extension of the proboscis and opening of the mouth in (C). Response in (D)
occurred within a fraction of a second from a starting posture as in (A). Cowcatcher-like structure
lying over the proboscis is a sensory oral veil for detecting chemical and mechanical stimuli. Pair
of upwardly directed objects are rhinophores which perform chemosensory functions. The
unpaired gill is on the right side; best seen in (C) and (D). (from Mpitsos, Collins, and McClellan
140]).

It is relatively easy to record intracellularly from individual neurons, and extracellularly from

the nerve bundles that communicate between the various ganglion. Because of the anatomical

separation of the ganglia. it is possible either to examine local effects arising from activity within a

group of neurons or within a single ganglion by severing the connectives, or to examine the

interactions between groups of neurons by leaving the connectives intact. Such work has

shown that the BCNs have a multiplicity of functions, but their most important feature is that the

functional attributes of a given neuron, or of the group as a whole, emerge from the



interrelationship or context of firing among all the coactive neurons [39. Moreover, the firing of

individual neurons and of the group is quite variable, as are the behaviors that these neurons

help to form and regulate [38]. The BCNs intercommunicate among themselves, converge and

diverge onto intemeurons and motoneurons in the brain and buccal ganglion, they receive

feedback from by the motoneurons that they drive [39], and they feed back onto the

interneurons that drive them (141. As such findings show, the neuroanatomic architecture of

Pleurobranchaea is designed for a high degree of parallel processing.

Figcjre 2: Brain (top panel: dorsal view): buccal ganglion (bottom panel. ventral view). Small dark
objects are neurons that have been filled with a black precipitate (cobalt sulfide) for better
visualization. Cells in the brain are motoneurons that innervate the mouth and bps. Cells in the
buccal ganglion are BCNs. many of which contact brain mnotoneurons either mnosynaptically or
polysynaptically. Not shown is that each buccal hemiganglion connec*,s with the corresponding
half of the brain by means of a long cerebral-buccal nerve connective (CBC). Magnification: brain
(22X); buccal ganglion (32X).



As In most Invertebrate animals, the Pfrobrarchae nervous system functions wel after

being removed from the rest of the animal. Such Isolated nervous systems can generate two

characteristic types of motor patterns relating to different behaviors, one relating to the

swallowing phase of feeding, and the other relating to the active phase of regurgitation (see

Mpitsos and Cohan 138,391 for a critical discussion). In the following sections we examine first

the motor pattern relating to feeding and then discuss an example relating to regurgitation.

COOPERATIVITY AND VARIABILITY IN SELF-ORGANIZING PROCESSES

Among their various functions, the BCNs generate the cyclical rhythm for opening and

closing the jaws. This rhythmic activity is shown in Fig. 3 as sequences of bursts in buccal

ganglion nerve root R3 which contains motoneurons that activate muscles for closing the jaws,

SOVN

M N "1 ie-9tilw

R3
R1

M

BCN

20 V (M)
40 mV (BC N)

30S

FgUru l: Functional "cooperativty" following perturbation of patterned activity. Top four traces
are extracellular recordings from nerve roots, each containing activity of many motoneuron
axons. Bottom two traces are intracellular recordings from a motoneuron (M) and a BCN.
Removal of the BCN by hyperpolarizing It (between arrows) caused cessation of all activity, but
the activity in the rest of nervous system eventually recovered despite the fact that the
hyperpolarization forced the BCN to remain quiescent. Activity here, as in all physiological
records shown below, was elcited by tonic electrical stimulation of a sensory mot of the buccal
ganglion. SOVN: brain nerve root innervating the oral veil and anleflor mouth. MN: brain nerve
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root innervating the mouth: contains axon of M. R3: buccal ganglion nerve root containing
motoneurons for closing jaws. RI: buccal ganglion root containing motoneurons for opening
jaws. (From Mpitsos and Cohan 139D.

and in root R1 which contains motoneurons that activate muscles for opening the jaws. As a

group, the BCNs have heterogeneous effects on the generation of patterned activity. Figure 3

shows a BCN that initially had a strong effect. Removal of this neuron from the circuit (by

passing hyperpolarizing current through the intracellular recording electrode) immediately

stopped all cyclical activity in motoneuron (M), in buocal roots R3 an R1, and in brain nerve roots

SOVN and MN. After about 60 sec, the pattern reestablished itself, despite the fact that the

BCN was still hyperpolarized. With each cycle in the reestblished pattern the membrane

potential of the BCN and MN exhibited small excitatory synaptic bumps originating from parallel

inputs from the BCNs and other newly activated neurons. Release of the BCN from

hyperpolanization (second arrow in Fig. 3) also released the motoneuron but had little effect on

the patlern of activity in the rest of the nervous system.

Another example of changeable function in single neurons appears in Fig. 4 which shows

the effect of the history of activity in the nervous system on subsequent activity in single

neurons. Sections A and B of Fig. 4 each contain a motor pattern relating to the swallowing

phase of feeding. However, in Fig. 4A the BCN and motoneuron fired most actively in phase

with the R1 portion of the buccal cycle, whereas in Fig. 4B they fired in phase with the R3

portion. The only difference between these two recording situations was that in Fig. 4A the

activity was recorded soon after the nervous system had generated a regurgitation motor

pattern, whereas in Fig. 4B the activity was recorded after the nervous system had been

generating the pattern relating to swallowing behavior.

The recordings in Figs. 3 and 4 illustrate two important interrelated features of cooperativity

and self-organization: 1) Patterns of responses can be established in different ways, and 2)

individual neurons can exhibit different functional properties within similar patterns. In Fig. 3 the

BCN initially had a strong effect in pattern generation, but then it lost this effect when other

BCNs reinstated the pattern. In Fig. 4 the BCN and motoneuron remained active throughout,

but completely changed their phase of activity as a consequence of the preceding activity.

Both of these examples are extreme cases of variability. Closer inspection of the traces in

Figs. 3 and 4 shows that there were many instances of relatively small variations. For example,

the number of action potentials in the bursts of R1 in Fig. 3, and the number of action potentials

in the BCN and motoneuron in Fig. 4, liffered from one burst to another. We believe that the

more extreme forms of variability arise from the same nonlinear dynamics that produce the small

variations Some of these smaller variations are examined quantitatively in the following section.



A *B

SOVN T -

MN Ff

R3

Ri | .p4*

:I

M I

II

I

BCN
125 mV(M)
50 mV(SCN)

Fjgure 4: History of activity in the nervous system affects the way in which activity among
neurons self-organizes to produce similar motor patterns. Same captions as in Fig. 3; different
M and BCN. Note that the BCN and M were most active during the RI phase of the buocal cycle
in (A) whereas they were most active during the R3 phase In (B). (From Mpitsos and Cohan
139]).

DYNAMICS OF FIRING IN SINGLE NEURONS DURING PATTERNED ACTIVITY
Interpolaion of Time Series

The time series of intracellular responses of BCNs and motoneurons (as in Figs. 3 and 4)

were first recorded on FM tape. Selected portions were then played back and cigitized at IK Hz

for computer analysis. The rate of cgitizaton was adequate for analysis of the 10 to 15 msec

action potenrial durations that are typical of molluscan neurons. As in Figs. 3 and 4, the activity

described below was activated by electrically stimulating the stornatogastric nerve which

Innervates the esophagus and carries chemosensory Information to the buccal ganglion. The



9

stimuli were presented at 1 Hz, and at an electrical current strength near the threshold for

generating the bile-swallow motor pattern Isee also 34-36,39].

To illustrate the analysis, we selected the activity of a brain motoneuron which received

converging inputs from several BCNs. The motor pattern was about 168 sec long and

contained 548 action potentials. Bouts of feeding in whole animals vanes from several seconds

to several minutes, and, therefore, the selected record was within the range of typical behavior

in whole animals. At digitization rates of 1K Hz, the number of points in the 168 sec time series

was too long for analysis on a typical laboratory microcomputer. In order to reduce the amount of

data, we used the sequence of unequal intervals occurring between action potentials instead of

the equally spaced samples in the digitized series. Longer patterns have been recorded from

other neurons, but we chose the present ones so as to examine situations that physiologists

may typically encounter in experimentation: i.e., the length of the data was representative of

adaptive responses in whole animals; the data required compression, but, once compressed,

the series was relatively short and contained few cycles of structured activity.

Analysis of time series composed of such unequally spaced spike intervals in BCNs and

motoneurons in Pleurobranchaea have yielded evidence for low-dimensional choas, as has

been described for spontaneous activity in cat cortex [46]. We believe, however, that it is

physiologically justifiable to convert the unequal time series into an equally spaced one by

7

0
Z 4

03

crLL 2

0 25 50 75 100 125 150 175

TIME (SEC)
figur.5: Firing frequency of a brain motoneuron during a 168 sec bout of the bite-swallow
motor pattern. Frequency represents the reciprocal of the time between a spike in the
motoneuron and the preceding spike. Data shown here is uninterpolated. For subsequent
analyses, a variety of interpolation rates were used. Major criterion for effective interpolation was
to reproduce all aspects of the shape in the uninterpolated series.
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interpolation. First, it is a relatively safe assumption to make that the frequency of action

potentials arriving at a synapse carries the code of the information in the input neuron's activity.

Figure 5 shows the frequency series for the uninterpolated data obtained from the motoneuron

described in the preceding paragraph. This series has three components: a slow trend in which

the baseline frequency slowly increased throughout the series; 11 consecutive bursts of

activity; and a high-frequency component which is superimposed on both the slow trend and

the repeating bursts. Second, we propose that the shape or the envelope of such a frequency

series, including initially all the components, contains the essential elements for reconstructing

the information that one neuron conveys to another. Third, we propose that it is permissible to

sample the series at equally spaced intervals as long as the interpolation rates retain the

characteristics of the uninterpolated frequency function. This transformation to equally-spaced

intervals allowed for the application of more analytical methods in examining the activity of single

neurons than are available for unequally spaced intervals.

Because interpolation distributes the density of points evenly throughout the series, too

low a rate underrepresented the high-frequency bursts, However, once we obtained good

congruence between the shapes of the uninterpolated and interpolated series, the analyzed

results remained stationary over a wide range of interpolation rates. In the'present example,

similar results were obtained using interpolation rates between 0.05 and 0.25 sec.

_ 3-
N

z
LLJ

Di
0
LL)

LL 0
LLI

€'! -2 • , • "" - , • ," • •

30 55 80 105 130 155 180 205

TIME (SEC)

EgurL6: Same patterned activity as in Fig. 5, except that the activity was linearly interpolated at
0.10 sec intervals and passed through a filter having a high pass of 0.05 Hz, and a low-pass of
0.15 Hz.
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Fgure 7: Amplitude spectra. (A) interpolated, unfiltered data. (B) interpolated and filtered data
using a band pass of 0.05 to 0.15 Hz.

The ampitude spectra of the unfiltered and filtered series are shown in Fig. 7. Interestingly,

the peaks are near but not exact multiples of one another. Examination of the data using

different digitization and interpolation rates showed that the characteristics of the filtered and

unfiltered spectra arose from the time series of the neuronal response rather than from the

manipulations performed on the data. Moreover, when the pattern of activity spontaneously

switched to another pattern representing the activity underlying regurgitation, the spectrum

also changed, but, again, many of the peaks appeared to be close multiples of one another.

Such spontaneous shifts in the pattern of neural activity are particularly interesting, and we shall

return to them later in this chapter.

Autocorrelation Function

We examined autocorrelation functions for two reasons: 1) To obtain an indication of

whether the activity was sensitive to initial conditions, i.e., whether the predictability of the

activity decreased with increasing lags into its evolution. 2) To determine the appropriate lag for

use in dimensional analysis.

The autocorrelation functions of the unfiltered time series slowly declined toward zero,

reflecting the slow trend in the baseline frequency of Fig. 5, whereas the autocorrelation

function of the filtered series quickly dropped to zero. Figure 8 shows that the autocorrelation

function of the filtered series in Fig. 7B first crossed zero at a lag of 3.7 sec, and within 60 sec

(approximately three cycles in the data of Fig. 6) the autocorrelation declined toward a more

stable value near zero. Given the fact that the times series was repetitive and of relatively short

duration, it is not surprising that harmonics appear at 75 and 150 sec, but the overall

autocorrelation shows a consistent decline.
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Fi.:ure . Normalized autocorrelation function of activity shown in Fig. 6.

Phase Portrait

From a time series of a single variable representing the combined effects of several

processes, it is possible to obtain an indication of the dynamics of the activity and of the number

of variables governing it. Following the work of Packard, Crutchfield, Farmer, and Shaw [43] and

of Takens [54], we defined a multidimensional space by mapping the original frequency series

f(t) along the x axis, then mapping the same data on the y axis after shifting it by a lag (r), and on

the z axis after a shift of 2,r. In d-dimensional space the procedure follows t(t+(d-1)r), where -r is

an integer multiple of the sampling interval. The evolution of the time series through successive

points in multidimensional space defines the trajectory of the activity, and the overall evolution

defines the phase portrait. A 3-D view of the first six cycles in the time series of Fig. 6 is shown

in Fig. 9. The trajectories begin at the upper right at the asterisk and progress clockwise and

outward until reaching the f(t+2T) axis, then they swing in toward the origin and turn upward and

outward agai. The phase portrait reserbles a bent coil. Even with so few cycles it is possible to

see some divergence in the interrelationship of the trajectories, particularly at the sharp comer

near the f(t+2 ) axis. To construct this phase portrait and to conduct the analyses presented in

subsequent sections, we used r = 3.7 sec, or multiples of ft. as determined from the first lag

that generated a zero autocorrelation (Fig. 8). Karl Eugen Graf (Department of Clinical and

Physiological Psychology, TObingen) has obtained good congruence of results on EEGs using

this method of selecting r and one based on mutual information theory (personal

communication).
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1(t+'r)

, a . .o .. •

...

Figure 9: Phase portrait of activity shown in Fig. 6; for clarity, only the first six cycles are shown.
The original series, f(t), was mapped on the x-axis, and then successively shifted by a lag r on
the y-axis and by 2 'r on the z-axis. The? (3.7 sec) was selected from the first zero crossing of the
autocorrelation function.

Correlation Dimension

Dimensional analyses provide an indication of two important features of time series: the

number of dimensions (d ) that govern the phase space, and the topological dimension (n) of

the phase portrait, which denotes the dynamical nature of the time series. Following

Grassberger and Procaccia (IS], we defined an integral autocorrelation function:

1 N
C (r) 2.. (r-,X.-X ) .1

This algorithm selects a point Xi and measures the number of points Xi lying within a prescribed

range of distances r until all N-1 points of the series are counted. The function excludes

points lying outside each r. The process is then repeated by selecting another point as Xi for all

N points. For small r, C(r) scales as rn. Thus, n may be obtained from the slopes of plots of

log 0(r) =n bg (r). The calculations are made for a series of embedding dimensions d: For

random noise n scales linearly with increasing d; i.e., noise fills all space as dimensions are
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added, but in deterministic processes, the value of n levels off (saturates) after a certain d.

Integer n values usually indicate predictable activity tending asymptotically toward some limit,

whereas noninteger (fractal) values indicate chaotic activity [30].
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EJgirJ10: Integral autocorrelation functions of activity shown in Fig. 5 after interpolation at 0.1
sec intervals; unfiltered data. Calculations were conducted for embedding dimension d =1
through 5.
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Figurl.: Determrination of regions along curves of Fig. 10 having linear and saturating slopes.

The slopes along the plots of log C(r) versus log (r) curves often show variability (Fig. 10). In

order to estimate the appropriate regions at which the slopes are linear and saturate toward a

common value, we followed the example of Rapp at a. [46] and calculated the slope of the

curves between successive points. These slopes were then plotted against log C(r) in Fig. 11.

In the indicated range of Fig. 11, the points for d - 1,2 are easily distinguishable at the bottom

near the log C(r) axis, but those for d - 3,4,5 intermingle. The indicated regions along the log

C(r) dimension were then used to calculate the slopes n along the same regions for each d in
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Fig. 10. Figure 12 shows the results of plotting n against d for the unfiltered activity of the

motoneuron. Also shown are the results for the filtered data of Fig. 6, and for random noise

having the same number of points, mean, and standard deviation as in the motoneuron series.

For random noise, n scaled linearly and equally with increasing d. The unfitered data saturated

at a fractal dimension above 2 at d = 4, whereas the filtered date saturated at a fractal dimension

below 2 at d a 2. The error levels were quite low, being smaller than the points in the graph.

Using selective filters, we found that it was the high-frequency components that produced the

difference between the filtered and unfiltered saturation levels in Fig. 12.

6

4

n 34 RANDOM
2.41 ±0.01 -4- UNFILTEPED

- FILTERED

2- 15 0.011

0~
0 1 2 3 4 5 6

d
Figure : Saturation of dimension n with increasing embedding dimension d. Unfiltered data
saturated at d = 4, whereas the filtered data saturated at d = 2. Random noise did not saturate.
Standard error for each calculation was smaller than the size of the symbol in the illustration.
Curves are drawn through points in order to aid visualization. See Figs. 10 and 11.

The saturation values of n were quite stationary when examined with different scaling

factors. Similar saturation levels were obtained with interpolation rates of 0.25 and 0.05 sec as

with the 0.1 sec rate used above. In addition, as shown in Fig.13 for the filtered and 0.1

interpolated data, the saturation levels were relatively unaffected by changing 't in the

calculations of C(r). The average -orbital period, as calculated from Poincar6 sections of the

phase portrait (discussed below), was 15 sec, and, therefore, the series of t shown in Fig. 13

property covered a large range of the orbit time.
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Figure 13: Topological dimension n remained stationary with increasing T; d also remained
constant, but is not shown here. Calculations were conducted on the filtered series shown in
Fig. 6.

Lyapunov Exponents

Lyapunov exponents provide a means for determining the topological growth of the

attractor as the time series evolves. We used the computer programs of Alan Wolf (personal

communication) and Wolf, Swift, Swinney, and Vastano [551 to calculate the first Lyapunov

exponent. Conceptually, the algorithm defines a d-dimensional sphere. Each dimension has a
Lyapunov exponent (k) indicating the rate of growth of the attractor in that dimension. The sum

of the exponents in a dissipative system is negative. Chaotic attractors have at least one

positive exponent denoting exponential divergence of nearby trajectories; i.e., stretching

occurs on the attractor in certain direction(s) of phase space (positive X), while contraction

occurs in other directions (negative X). In systems having positive X., folding must occur in order

to keep the diverging trajectories within a bounded surface.
From Wol et Al. [55J, the algorithm for determining X1 is:

1 M L t(tk)
= kt log 2 L 2tM to k1 L (t k.1 )

The total time for evolving through data consisting of M equally spaced points is tM, and to is the

initial time. L(tk-1) is the distance separating a point on a fiducial trajectory of the attractor and a

nearest point in phase space at time tk.1. L'(tk) is a new distance between the fiducial point and

another nearest replacement point after the trajectory has evolved a prescribed number of

steps to time tk. As a simple example, one might start by determining the distance between two

points lying in adjacent trajectories in Fig. 10. After evolving a number of time steps along -a
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trajectory, the distance between the points may have increased. After a series of similar

iterations invoMng increasing replacement distances, the above equation yields a positive

change in X1 in bits per sec.

Two scaling factors critically influence the calculations of )1: the number of time steps in the

evolution through the attractor before making the calculations, and the maximum distance

through the range of the data in searching for the replacement points at each calculation. To

determine the appropriate range for each of these scaling factors, we calculated X1 for a series

of evolution times and maximum replacement distances: First, X1 was calculated for a given

evolution time (multiple of the 0.1 sampling interval) and a series of maximum allowable

replacement distances (percent of the range of the data). For each pair of evolution time and

replacement distance, the calculations generated relatively stationary X1 values as the iterations

progressed through the time series (Fig. 14). Second, the stationary X1 obtained for the series

0.8-

0.6

0.4
A =0.15

0.2

0.0'

0 400 800 1200 1600

ITERATION

Figure 14: First Lyapunov exponent (in bits/sec). Calculations were made at fixed intervals
(multiples of the sampling interval) in the evolution through the attractor. Note that the
exponent reached a positive, stationary value. The embedding space was constructed using
t- 3.7 sec and d 3.

of calculations with each evolve step was plotted against a range of maximum allowable
replacement distances (Fig. 15). The results show that replacement distance Umax was a more

critical factor than evolution time EVOLVE. For small replacement distances, different evolution
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Figure 15: The first Lyapunov exponent plotted as a function of EVOLVE (multiples of the
sampling interval) and Lmax. (the maximum prescribed scaling through the range of the data
before making each calculation). Embedding space here was constructed using t =3.7 sec
andd=3.

steps generated different .1, but for replacement distances of about 30% of the data range, all

evolution steps generated similar X-. Using an EVOLVE of 20 and a maximum replacement

distance of 30% of the data range, we also determined that X1 was reasonably stationary over a

wide range of - (Fig. 16).

0.4

S 0.2

0.0 
o10 12

I (SEC)

Figure.IS: First Lyapunov exponent remained relatively stationary when the calculations were
made in enbedding space constructed with different lags t.

ID Map

The trajectories representing the activity of the motoneuron that we have been analyzing

have an unpredictable yet deterministic interrelationship with one another. To demonstrate



19

this, we first obtained a Poincar6 cross section of the flow of the trajectories through phase

space, and then constructed a 1D map of the relative position of the trajectories within the

Poincard section, much as Roux, Simoyi, and Swinney [491 have described in their analysis of

the Belousov-Zhabotinskii reaction.

The horizontal line in Fig. 17A shows the level at which we made a cut in the 2-D phase

portrait. The one-way crossings of the trajectories through this line yielded the average orbital

period and the interrelationship of one trajectory to another. Each trajectory crossed the line at

some parameter value and with an average period of 15 sec. We then normalized the parameter

positions of the crossings and plotted them in Fig. 176 as a 1D map showing the relative
position of a particular crossing (tn+i) with respect to the previous crossing (tn). The number

next to each point in Fig. 17B shows which ordered-pair of Poincar6 crossings the point

represents.

A B
2." 1.0" 2 4 5

7
1.0' ..- *•3

, .X -0.6

++ 0.00.4"

-1 . ...

o0: 0.2

-2. 0.0
0-2 - 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0

f (t) t n

Eigure._.Z (A) Poincar6 section was taken at the horizontal line through a 2-D phase portrait.
(B) 1 D map constructed by plotting the relative position of ordered pairs of trajectories passing
in the same direction through the horizontal line. The numbers next to each point show the
succession of ordered-pairs.

We can extract two important features from the 1 D map. First, the points are not randomly

scattered. In fact, they appear to fall on a relatively smooth curve having a positive slope above

the 1:1 ine and a very steep negative slope below the 1:1 line. Second, although there are not

enough Poincar6l crossings to define the exact slope of a smooth curve as it crosses the 1:1

line, the steepness of the fall-off below the line strongly suggests that the slope is greater

than -1. Both of these findings are consistent with the findings we presented In the previous

sections indcating that the activity of the motoneuron was chaotic: the nonrandom positions of

the points show that the activity was governed by a deterrniistlic process, and the steep fall-off
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shows tiat the activity was not a limit cycle, but rather that it was unpredictable (nonperiodic).

The shape of the series of points in Fig. 17B is similar to the ID map in Chay's [9] computer

studies in which she found that spiking activity of simulation neurons bifrucated from periodic

activity into chaos through period doubling. One interesting difference, is that while both

Chay's simulation study and our study dealt with single neurons, the simulations dealt solely

with the generation of chaos in the interspike intervals, whereas our analyses dealt with the

cycle of high-frequency bursts that comprised the motor pattern. Moreover, because the

motoneuron was driven by BCNs, which generate the rhythmic pattern of activity [391, it seems

likely that our results apply not only to chaos in a single motoneuron neurons but also to chaos

reflecting the integrated activity of the group of coactive neurons. Examination of the activity in

individual BCNs has demonstrated similar evidence of low-dimensional chaos as in the

motoneurons.

MOTOR PATTERN HETEROGENEITY

In the above discussion we have examined variability occurring within a relatively

homogeneous motor pattern. However, even in response to constant stimulation, motor

patterns can be structurally nonhomogeneous. An example of this is shown in Fig. 18. The first
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FigureIS: Heterogeneity of firing in a brain motoneuron. First half of the record is the same as
in Fig. 5. Second half or the record, representing regurgitation behavior, arose spontaneously.
The activating stimulus was the same throughout and consisted of brief (1 rnsec) electrical
pulses that were applied at a rate of 1 Hz to the stomatogastric nerve, an afferent root of the
buccal ganglion.



200 sec of this activity Is the same as shown in Fig. 5. Ater that point, the rpeating bursts

Increased rapidly and overlapped into a peak of high-frequency activity. Subsequently, a the

overall frequency decreased, the individual bouts of high-frequency firing again reappeared.

During Instances of alterations in the pattern of firing, some neurons become more active

while others become more quiescent. The new motor pattern usually has a shorter duration

than the one from which it emerges, and often has characteristics that resemble the motor

pattern relating to the active phase of regurgitation [34,35,38). Figure 19 shows a segment of a

motor patlem involving three neurons that can be reidentified in successive preparations: the

R 1

R3

I .

4"''4 I*-'--- ', II I . I

I1I

JE

30S

Elgur.e.19. Heterogeneity of firing in many neurons. Note the spontaneous shift of activity, first,
from a low-frequency pattern, which relates to bite-swallow behavior, to a higher-frequency
pattern, which relates to regurgitation behavior, and then the return to the first. M3 is a
reidentifiable buccal ganglion motoneuron, and 11 is a reldentifiable intemeuron. SGN Is the
stomatogastric nerve which innervates the salivary gland, and CBC is the oerebral-bucca
connective. Small-arpitude bursts in the CBC were primarily from the SCNs; large spike was
from the metacerebral giant neuron in the brain. Tonic eleclKcal pulses were applied to the SGN
on the opposite side of the buccal ganglion. Other captions are the same as in Fig. 3.
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metacerebral giant neuron (located in the brain) whose axon spike appears in the CBC trace of

Fig. 19; a buccal ganglion motoneuron (trace M3), and a buccal ganglion interneuron (trace Ii).

The illustrated segment was taken from a 10 min recording, during which the pattern switched

approximately every 90 sec. As in the case observed in recordings taken from relatively intact

animals [38], some episodes of motor pattern switching were often composed of blends of the

two extremes shown in Figs. 18 and 19. As we shall discuss, such motor pattern variations pose

difficult though interesting problems in the application of dynamical theories to behavior.

DISCUSSION

In order to focus explicitly on variability arising from processes within the central nervous

system, we used nervous systems that had been completely removed from sensory inputs and

motor effectors. Such isolated nervous systems have been characterized previously

[e g.,14.34-36,39]. In this chapter we have analyzed the activity of a motoneuron which

received inputs from several BCNs that are responsible for generating and controlling rhythmic

motor output underlying different behaviors. The neurophysiological records that we chose to

analyze had characteristics that posed problems, as presented above, that neurobiologists

often face in experimental situations. Despite these problems, the results appear to be

relatively robust. In further work, we have analyzed the activity of other motoneurons and BCNs,

some of whose activity was considerably longer then the present example, and have obtained

similar results.

Chaotic Attractors in the Generation of Motor Patterns
Evidence for oresence of chaotic attractors. The definition of attractors has been widely

discussed le g.,1,12,15,30,531. In reference to neural networks, they may be considered

simply as energy states that form and constrain the integrated activity within a limited parameter

space defined by the phase portrait. The conclusion that the attractors in Pleurobranchaea may

be chaotic follows from the findings that: 1) Autocorrelation functions quickly fall to zero.

2) Calculation of correlation dimensions shows that the activity is governed by fractal topological

structures that are embedded in low-dimensional state space. 3) Trajectories in the phase

portraits appear to diverge from one another. This finding is supported by calculations showing

that the first Lyapunov exponent is positive which indicates that the trajectories diverge

exponential, and that there must be folding of the attractor in order to keep the trajectories

within a bounded surface. 4) 1D maps taken from Poincar6 sections show that the interrelated

positions of the trajectories are not random, but, rather, appear to follow some relatively simple

function whose structure is indicative of nonperiodic behavior. These findings indicate that the

pattern-generating mechanisms in Pleurobranchaea themselves generate unpredictable
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though deterministic activity in the same way that mathematical relationships such as the logistic

equation 1321 or the ROsser attractor [48] generate chaotic or unpredictable activity.

Behavior-specific chaotic attractors. Previous analyses of repetitive behavior or oscillatory

brain function have fruitfully characterized the dynamics of repetitive behavior, or of the

underlying neural activity, as limit cycles [21-23,25,45). In rabbit olfactory EEGs, basal chaotic

activity provides a route for limit cycles to emerge that represent particular odors [12,53].

Similarly, "critical fluctuations" have been proposed as a means by which phase transitions occur

in human hand and finger movements [22]. Chaotic activity may also provide a route for pattern

switching in Pleurobranchaea. However, the predominance of evidence for chaos in our

records suggests that chaotic attractors themselves may be behavior-specific. Although chaos

has been proposed to occur in a variety of biological systems 13-5,12,27,33,50,53], to our

knowledge the work reported here constitutes the first evidence of chaos in patterned activity

that is relatable to adaptive behavior in whole animals.

Nonstationary Motor Patterns

Intrinsic variation and adaptive stability. By being sensitive to initial conditions, a signal

exhibiting intrinsic variation, in contrast to a nonvarying signal or one on which extrinsic noise is

superimposed, can carry new information into the future. The intrinsic variations that we have

ascribed above to chaos, represent in effect the attempt of the nervous system to generate

new informational space which, we propose, provides for stability in the animal's adaption to a

varying and often unpredictable environment.

In the natural environment, animals are often confronted by many stimuli simultaneously

requiring a'behavioral choice" to respond selectively [101 or to exhibit a blend [6,28,29,38].

Considered from a classical perspective, there may be reflex interactions between separate

neurocircuits relating to the different behaviors [26]. However, even given evidence of such

reflex interactions, a view of the "neurocircuit" as arising from self-organizing cooperativity

among groups of neurons, as defined in the Introduction, may give some insight into the

spontaneous pattern switching and blending that we have presented above in reference to

Figs. 18 and 19.

Consider the following example: inverted animals exhibit slower righting behavior when

food is present than when there is no food [10]. In order to right themselves, animals usually

have to twist the anterior portion of the foot, but they also direct the foot toward the direction of

the food stimulus (Fig. 1) and may even try to "grasp" it. Thus, when animals are inverted and

presented food, the neurons governing the movement of the anterior regions of the foot may

receive instructions simultaneously for two different behaviors. Such influxes of mixed sensory

instructions may lead to the production of hybrid or blended behaviors, and thereby cause an
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increase in the execution time (or complete suppression) of one or both behaviors, not so much

by reflex inhibition of one behavior to another, but rno'e because of a lack of sufficient

"consensus' of information arising among the converging sensory inputs as they compete for

activation of target neurons. Because the buccal-oral system of Pleurobranchaea has a greater

range of multifunctional capabilities than the foot, and because the BCNs are key elements in

the generation and control of all of these behaviors [39], it is not surprising that blends of motor

patterns should be observed in the activity of the BCNs and in the neurons with which they

interact.

Adaptive attractors and blending. The present findings lead to two interrelated questions

that pose difficult experimental problems: 1) If neural output is so variable and unpredictable,

what determines the appropriate response? 2) Can the attractor concept account for blending?

In response to the first question, we propose that there may be no appropriate centrally

programmed motor pattern or genetically established neurocircuit for a behavior [38,39].

Rather. the self-organizing process can lead to many types of motor patterns, some of which

may be nonadaptive for the particular conditions surrounding the animal. The correct motor

pattern and the effective "neurocircuit" arise from continual dialectic interactions between the

animal and the environment. Variability occurring naturally in thePleurobranchaea nervous

system gives these emerging "neurocircuits" a fluid quality. The interaction of the animal with

the environment further accentuates such fluidity. It is necessary, therefore, to consider the

combined effects of two sources of influence, one intrinsic and the other extrinsic, in the

process by which functional neurocircuits emerge during the production of adaptive behavior.

In response to the second question, the adavantage of state space analyses and attractor

formulations is that many quantitative features of dynamical processes may be obtained without

having to determine the equations of motion. However, the apparent fluidity of neural activity

poses difficulties in applying dynamical theories. For example, nonhomogeneous attractors

that have topological features representing different types of motor patterns may be appropriate

when the patterns represent different aspects of the same behavior, but are more difficult to

invoke in order to account for the appearance of different behaviors. It is probably more useful

to consider motor pattern switching (Figs. 18 and 19) as bifrucations from an attractor to another,

with each attractor representing a different behavior or motor pattern. Since the entire phase

space represents the possible dynamical combinations of the group of coactive neurons, it is

not unreasonable that intermediate areas between the attractors, or the basins of individual

attractors, could have mixtures of several motor patterns. An interesting possibility is that the

attractors thermselves may not be stationary and that together the different attractors are part of a

larger, "hyper" attractor having its own dynarrics.
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Unlike known mathematical and physical attractors that have stationary qualities, neural

systems are subject to many temporal changes that alter the underlying framework from which

the patterns emerge. There may be long-term effects relating to learning or hormone levels,

but short-term effects are probably more common. Examples of short-term effects were shown

in Figs. 3 and 4 regarding the effect of history on the generation of motor patters. Given a

quiescent nervous system or a recent startup of a particular motor pattern, the activity may

appear as shown for the first sections of Fig. 18 and 19. As the activity progresses, the

underlying context of group activity may change because individual neurons are affected by the

preceding activity in which they take part. As each neuron changes, its parametric effect on the

group can also change. Depending on the extent of such parametric changes, the activity of

the group may show reversible temporal fluctuations and graded shifts into new types of activity.

CONCLUSION

We have attempted to illustrate in this chapter that functional "neurocircuits" leading to

adaptive behavior have a fluid quality. In order for concepts such as attractors to be useful they

must be able to account for these fluid qualities. While these constructs, which have arisen

primarily from studies in the dynamics of idealized physical and mathematical models, have been

useful in the study of variability in our experimental system, the experimental system in turn

seems to pose questions for further development of dynamical theory. Although we have

examined the possibility that there may be chaos in neural processing, our central question has

not so much to do with chaos per se, but rather with the role of variation and of the types of

variations that become involved in the emergence of self-organization. Moreover, inasmuch as

nervous systems (as most biological systems) are distributed, parallel, variable, self-organizing,

and dialectical, it is essential. as discussed with regard to the neural basis of learning [40,411, to

develop a conceptual language for addressing these issues more effectively than present

theory allows. Inasmuch as our experimental system is not unique in its essential characteristics,

comparative analyses of such relatively "simple" systems may help to uncover general principles

underlying the self-organization of activity in cooperative groups.
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